4.4 Article

Synthesis and characterization of CuS, CuS/graphene oxide nanocomposite for supercapacitor applications

期刊

AIP ADVANCES
卷 10, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5132713

关键词

-

资金

  1. CCSU-AAUP Minority Retention and Recruitment Committee (MRRC) grant
  2. CCSU-AAUP Faculty Research grant
  3. Polymer Chemistry Program
  4. Kansas Polymer Research Center, Pittsburg State University
  5. Werth Family Industry Academic Fellowship Program

向作者/读者索取更多资源

Supercapacitors or electrochemical capacitors are receiving greater interest because of their high-power density, long life, and low maintenance. We have synthesized CuS nanoparticles and graphene oxide (CuS-GO) nanocomposites for supercapacitor applications because of their low cost and excellent electrochemical properties. The phase purity of each material was determined using powder XRD studies. The bandgap was determined by UV-visible spectrophotometric studies. Scanning electron microscope and transmission electron microscope images revealed the nano-scale morphology of the synthesized particles. All the electrochemical measurements were conducted in a standard three-electrode configuration, using a platinum wire as the counter electrode and Hg/HgO as the reference electrode. CuS and its composites with graphene oxide on nickel foam were used as working electrodes. All the electrochemical measurements were performed in 3M KOH solution. The CuS-GO nanocomposite electrode showed a specific capacitance of 250 F/g, 225 F/g, 182 F/g, 166 F/g, 161 F/g, and 158 F/g at a current density of 0.5 A/g, 1 A/g, 5 A/g, 10 A/g, 15 A/g, and 20 A/g, respectively. CuS-GO electrodes showed a specific capacitance retention of 70% after 5000 charge-discharge cycles at a current density of 5 A/g.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据