4.4 Review

Review of the development of copper oxides with titanium dioxide thin-film solar cells

期刊

AIP ADVANCES
卷 10, 期 1, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.5125433

关键词

-

向作者/读者索取更多资源

Copper oxide-titanium dioxide (TiO2) p-n junctions are promising materials for photovoltaic devices and may reduce production costs due to their low cost and inexpensive production methods compared with silicon solar cells. The present review compares solar cells made with copper oxides combined with TiO2-TiO2/Cu2O and TiO2/CuO heterojunctions, and cascade heterojunction systems. First, we describe the main properties of titanium (IV) dioxide (TiO2), cuprous oxide (Cu2O), and cupric oxide (CuO), and their potential applications. Next, we explain the concept of copper oxide and TiO2 heterojunctions. We summarize and present the photovoltaic characteristics (efficiency, fill factor, circuit current density, and open circuit voltage), thickness, preparation method, and electrode type for solar cells comprising copper oxide and TiO2. The efficiency of the solar cells ranged from 0.0005% to 1.62%. The thickness of the TiO2 and cupric oxide layers ranged from 0.06 to 16 mu m, and from 0.18 to 1.5 mu m, respectively, depending on the fabrication method. Additionally, we review and discuss the available combinations of copper oxide with other materials (Cu2O with ZnO, CuO with ZnO, and CuO with Si), as well as the effect of the thickness of the copper (I) oxide and copper (II) oxide on the solar cell performance. Finally, we present aspects to improve the conversion efficiency of heterojunction solar cells with copper oxides combined with TiO2. This review will be useful for the construction and further development of thin-film solar cells. (c) 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据