4.7 Article

Complementary roles of murine NaV1.7, NaV1.8 and NaV1.9 in acute itch signalling

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-020-59092-2

关键词

-

资金

  1. German Research Foundation [KR4391/1-1, KR3618/3-1]
  2. interdisciplinary center for clinical research (IZKF) at the Friedrich-Alexander-University of Erlangen-Nurnberg [E20, E27]

向作者/读者索取更多资源

Acute pruritus occurs in various disorders. Despite severe repercussions on quality of life treatment options remain limited. Voltage-gated sodium channels (Na-V) are indispensable for transformation and propagation of sensory signals implicating them as drug targets. Here, Na(V)1.7, 1.8 and 1.9 were compared for their contribution to itch by analysing Na-V-specific knockout mice. Acute pruritus was induced by a comprehensive panel of pruritogens (C48/80, endothelin, 5-HT, chloroquine, histamine, lysophosphatidic acid, trypsin, SLIGRL, beta-alanine, BAM8-22), and scratching was assessed using a magnet-based recording technology. We report an unexpected stimulus-dependent diversity in Na-V channel-mediated itch signalling. Na(V)1.7(-/-) showed substantial scratch reduction mainly towards strong pruritogens. Na(V)1.8(-/-) impaired histamine and 5-HT-induced scratching while Na(V)1.9 was involved in itch signalling towards 5-HT, C48/80 and SLIGRL. Furthermore, similar microfluorimetric calcium responses of sensory neurons and expression of itch-related TRP channels suggest no change in sensory transduction but in action potential transformation and conduction. The cumulative sum of scratching over all pruritogens confirmed a leading role of Na(V)1.7 and indicated an overall contribution of Na(V)1.9. Beside the proposed general role of Na(V)1.7 and 1.9 in itch signalling, scrutiny of time courses suggested Na(V)1.8 to sustain prolonged itching. Therefore, Na(V)1.7 and 1.9 may represent targets in pruritus therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据