4.7 Article

Functional mechanism and pathogenic potential of MYRF ICA domain mutations implicated in birth defects

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-020-57593-8

关键词

-

资金

  1. National Institutes of Health [R01NS094181]

向作者/读者索取更多资源

Myrf is a membrane-bound transcription factor that plays a key role in various biological processes. The Intramolecular Chaperone Auto-processing (ICA) domain of Myrf forms a homo-trimer, which carries out the auto-cleavage of Myrf. The ICA homo-trimer-mediated auto-cleavage of Myrf is a prerequisite for its transcription factor function in the nucleus. Recent exome sequencing studies have implicated two MYRF ICA domain mutations (V679A and R695H) in a novel syndromic form of birth defects. It remains unknown whether and how the two mutations impact the transcription factor function of Myrf and, more importantly, how they are pathogenic for congenital anomalies. Here, we show that V679A and R695H cripple the ICA domain, blocking the auto-cleavage of Myrf. Consequently, Myrf-V679A and Myrf-R695H do not exhibit any transcriptional activity. Molecular modeling suggests that V679A and R695H abrogate the auto-cleavage function of the ICA homo-trimer by destabilizing its homo-trimeric assembly. We also found that the ICA homo-trimer can tolerate one copy of Myrf-V679A or Myrf-R695H for its auto-cleavage function, indicating that V679A and R695H are not dominant negatives. Thus, if V679A and R695H in a heterozygous state caused birth defects, it would be via haploinsufficiency of MYRF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据