4.7 Article

Synaptic weighting in single flux quantum neuromorphic computing

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-020-57892-0

关键词

-

资金

  1. IARPA Cryogenic Computing Complexity Program

向作者/读者索取更多资源

Josephson junctions act as a natural spiking neuron-like device for neuromorphic computing. By leveraging the advances recently demonstrated in digital single flux quantum (SFQ) circuits and using recently demonstrated magnetic Josephson junction (MJJ) synaptic circuits, there is potential to make rapid progress in SFQ-based neuromorphic computing. Here we demonstrate the basic functionality of a synaptic circuit design that takes advantage of the adjustable critical current demonstrated in MJJs and implement a synaptic weighting element. The devices were fabricated with a restively shunted Nb/AlOx-Al/Nb process that did not include MJJs. Instead, the MJJ functionality was tested by making multiple circuits and varying the critical current, but not the external shunt resistance, of the oxide Josephson junction that represents the MJJ. Experimental measurements and simulations of the fabricated circuits are in good agreement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据