4.7 Article

Long-range propagation of protons in single-crystal VO2 involving structural transformation to HVO2

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-56685-4

关键词

-

资金

  1. Nanotechnology Platform Project (Nanotechnology Open Facilities in Osaka University) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) [S-18-OS-0020, F-18-OS-0024]

向作者/读者索取更多资源

Vanadium dioxide (VO2) is a strongly correlated electronic material with a metal-insulator transition (MIT) near room temperature. Ion-doping to VO2 dramatically alters its transport properties and the MIT temperature. Recently, insulating hydrogenated VO2 (HVO2) accompanied by a crystal structure transformation from VO2 was experimentally observed. Despite the important steps taken towards realizing novel applications, essential physics such as the diffusion constant of intercalated protons and the crystal transformation energy between VO2 and HVO2 are still lacking. In this work, we investigated the physical parameters of proton diffusion constants accompanied by VO2 to HVO2 crystal transformation with temperature variation and their transformation energies. It was found that protons could propagate several micrometers with a crystal transformation between VO2 and HVO2. The proton diffusion speed from HVO2 to VO2 was approximately two orders higher than that from VO2 to HVO2. The long-range propagation of protons leads to the possibility of realizing novel iontronic applications and energy devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据