4.7 Article

Either Rap1 or Cdc13 can protect telomeric single-stranded 3′ overhangs from degradation in vitro

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-55482-3

关键词

-

资金

  1. Carl Trygger Foundation
  2. Royal Physiographic Society in Lund
  3. Erik Philip-Sorensen Foundation
  4. Jorgen Lindstrom's Foundation
  5. Swedish Research Council
  6. Sven and Lilly Lawski Foundation

向作者/读者索取更多资源

Telomeres, the DNA-protein structures capping the ends of linear chromosomes, are important for regulating replicative senescence and maintaining genome stability. Telomeres consist of G-rich repetitive sequences that end in a G-rich single-stranded (ss) 3' overhang, which is vital for telomere function. It is largely unknown how the 3' overhang is protected against exonucleases. In budding yeast, double-stranded (ds) telomeric DNA is bound by Rap1, while ssDNA is bound by Cdc13. Here, we developed an in vitro DNA 3'end protection assay to gain mechanistic insight into how Naumovozyma castelli Cdc13 and Rap1 may protect against 3' exonucleolytic degradation by Exonuclease T. Our results show that Cdc13 protects the 3' overhang at least 5 nucleotides (nt) beyond its binding site, when bound directly adjacent to the ds-ss junction. Rap1 protects 1-2 nt of the 3' overhang when bound to dsDNA adjacent to the ds-ss junction. Remarkably, when Rap1 is bound across the ds-ss junction, the protection of the 3' overhang is extended to 6 nt. This shows that binding by either Cdc13 or Rap1 can protect telomeric overhangs from 3' exonucleolytic degradation, and suggests a new important role for Rap1 in protecting short overhangs under circumstances when Cdc13 cannot bind the telomere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据