4.7 Article

Identification of the core bacteria in rectums of diarrheic and non-diarrheic piglets

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-55328-y

关键词

-

资金

  1. National Key R&D Program of China [2017yfd0500501]
  2. Performance Incentive Guidance for Scientific Research Institution of Chongqing Science & Technology Commission [cstc2019jxjl0035]
  3. Chongqing Postdoctoral Research Special Funding Project [Xm2016031]
  4. Chongqing Basic Scientific Research [17408]

向作者/读者索取更多资源

Porcine diarrhea is a global problem that leads to large economic losses of the porcine industry. There are numerous factors related to piglet diarrhea, and compelling evidence suggests that gut microbiota is vital to host health. However, the key bacterial differences between non-diarrheic and diarrheic piglets are not well understood. In the present study, a total of 85 commercial piglets at three pig farms in Sichuan Province and Chongqing Municipality, China were investigated. To accomplish this, anal swab samples were collected from piglets during the lactation (0-19 days old in this study), weaning (20-21 days old), and post-weaning periods (22-40 days), and fecal microbiota were assessed by 165 rRNA gene V4 region sequencing using the Illumina Miseq platform. We found age-related biomarker microbes in the fecal microbiota of diarrheic piglets. Specifically, the family Enterobacteriaceae was a biomarker of diarrheic piglets during lactation (cluster A, 7-12 days old), whereas the Bacteroidales family S24-7 group was found to be a biomarker of diarrheic pigs during weaning (cluster B, 20-21 days old). Co-correlation network analysis revealed that the genus Escherichia-Shigella was the core component of diarrheic microbiota, while the genus Prevotellacea UCG-003 was the key bacterium in non-diarrheic microbiota of piglets in Southwest China. Furthermore, changes in bacterial metabolic function between diarrheic piglets and non-diarrheic piglets were estimated by PICRUSt analysis, which revealed that the dominant functions of fecal microbes were membrane transport, carbohydrate metabolism, amino acid metabolism, and energy metabolism. Remarkably, genes related to transporters, DNA repair and recombination proteins, purine metabolism, ribosome, secretion systems, transcription factors, and pyrimidine metabolism were decreased in diarrheic piglets, but no significant biomarkers were found between groups using LEfSe analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据