4.7 Article

Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor's by surfactant modified magnetic nanoadsorbents (sMNP) - An endeavor to diminish probable cancer risk

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-54902-8

关键词

-

向作者/读者索取更多资源

Response surface methodology (RSM) approach was used for optimization of the process parameters and identifying the optimal conditions for the removal of both trihalomethanes (THMs) and natural organic matter (NOM) in drinking water supplies. Co-precipitation process was employed for the synthesis of magnetic nano-adsorbent (sMNP), and were characterized by field emission scanning electron microscopy (SEM), trans-emission electron microscopy (TEM), BET (Brunauer-Emmett-Teller), energy dispersive X-ray (EDX) and zeta potential. Box-Behn ken experimental design combined with response surface and optimization was used to predict THM and NOM in drinking water supplies. Variables were concentration of sMNP (0.1g to 5 g), pH (4-10) and reaction time (5 min to 90 min). Statistical analysis of variance (ANOVA) was carried out to identify the adequacy of the developed model, and revealed good agreement between the experimental data and proposed model. The experimentally derived RSM model was validated using t-test and a range of statistical parameters. The observed R-2 value, adj. R-2, pred. R-2 and F-values indicates that the developed THM and NOM models are significant. Risk analysis study revealed that under the RSM optimized conditions, a marked reduction in the cancer risk of THMs was observed for both the groups studied. Therefore, the study observed that the developed process and models can be efficiently applied for the removal of both THM and NOM from drinking water supplies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据