4.7 Article

Self-Assembly in ultrahigh molecular weight sphere-forming diblock copolymer thin films under strong confinement

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-54648-3

关键词

-

资金

  1. International Research Training Group 2022 Alberta/Technical University of Munich International Graduate School for Environmentally Responsible Functional Hybrid Materials (ATUMS)
  2. Excellence Cluster Nanosystems Initiative Munich (NIM)
  3. Center for NanoScience (CeNS)
  4. German Research Foundation [DFG GA 2169/1-1]
  5. German Research Foundation (DFG)
  6. Technical University of Munich (TUM)

向作者/读者索取更多资源

Ultrahigh molecular weight (UHMW) diblock copolymers (DBCs) have emerged as a promising template for fabricating large-sized nanostructures. Therefore, it is of high significance to systematically study the influence of film thickness and solvent vapor annealing (SVA) on the structure evolution of UHMW DBC thin films. In this work, spin coating of an asymmetric linear UHMW polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) DBC is used to fabricate thin films, which are spherically structured with an inter-domain distance larger than 150 nm. To enhance the polymer chain mobility and facilitate approaching equilibrium nanostructures, SVA is utilized as a post-treatment of the spin coated films. With increasing film thickness, a local hexagonal packing of PMMA half-spheres on the surface can be obtained, and the order is improved at larger thickness, as determined by grazing incidence small angle X-ray scattering (GISAXS). Additionally, the films with locally hexagonal packed half-spherical morphology show a poor order-order-poor order transition upon SVA, indicating the realization of ordered structure using suitable SVA parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据