4.6 Article

Mechanical Properties of Ultra-High Performance Concrete before and after Exposure to High Temperatures

期刊

MATERIALS
卷 13, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/ma13030770

关键词

ultra-high performance concrete; residual mechanical properties; high temperature

资金

  1. Ministry of Science and Technology of Taiwan [MOST 108-2221-E-230-003-MY2]

向作者/读者索取更多资源

Compared with ordinary concrete, ultra-high performance concrete (UHPC) has excellent toughness and better impact resistance. Under high temperatures, the microstructure and mechanical properties of UHPC may seriously deteriorate. As such, we first explored the properties of UHPC with a designed 28-day compressive strength of 120 MPa or higher in the fresh mix phase, and measured its hardened mechanical properties at seven days. The test variables included: the type of cementing material and the mixing ratio (silica ash, ultra-fine silicon powder), the type of fiber (steel fiber, polypropylene fiber), and the fiber content (volume percentage). In addition to the UHPC of the experimental group, pure concrete was used as the control group in the experiment; no fiber or supplementary cementitious materials (silica ash, ultra-fine silicon powder) were added to enable comparison and discussion and analysis. Then, the UHPC-1 specimens of the experimental group were selected for further compressive, flexural, and splitting strength tests and SEM observations after exposure to different target temperatures in an electric furnace. The test results show that at room temperature, the 56-day compressive strength of the UHPC-1 mix was 155.8 MPa, which is higher than the >150 MPa general compressive strength requirement for ultra-high-performance concrete. The residual compressive strength, flexural strength, and splitting strength of the UHPC-1 specimen after exposure to 300, 400, and 500 degrees C did not decrease significantly, and even increased due to the drying effect of heating. However, when the temperature was 600 degrees C, spalling occurred, so the residual mechanical strength rapidly declined. SEM observations confirmed that polypropylene fibers melted at high temperatures, thereby forming other channels that helped to reduce the internal vapor pressure of the UHPC and maintain a certain residual strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据