4.6 Article

Development of Inherently Flame-Retardant Phosphorylated PLA by Combination of Ring-Opening Polymerization and Reactive Extrusion

期刊

MATERIALS
卷 13, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/ma13010013

关键词

reactive flame retardancy; PLA ROP; chain extension; DOPO

资金

  1. European Commission FSE and FEDER
  2. National Fund for Scientific Research (F.R.S.-FNRS)

向作者/读者索取更多资源

In this study, a highly efficient flame-retardant bioplastic poly(lactide) was developed by covalently incorporating flame-retardant DOPO, that is, 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide. To that end, a three-step strategy that combines the catalyzed ring-opening polymerization (ROP) of L,L-lactide (L,L-LA) in bulk from a pre-synthesized DOPO-diamine initiator, followed by bulk chain-coupling reaction by reactive extrusion of the so-obtained phosphorylated polylactide (PLA) oligomers (DOPO-PLA) with hexamethylene diisocyanate (HDI), is described. The flame retardancy of the phosphorylated PLA (DOPO-PLA-PU) was investigated by mass loss cone calorimetry and UL-94 tests. As compared with a commercially available PLA matrix, phosphorylated PLA shows superior flame-retardant properties, that is, (i) significant reduction of both the peak of heat release rate (pHRR) and total heat release (THR) by 35% and 36%, respectively, and (ii) V0 classification at UL-94 test. Comparisons between simple physical DOPO-diamine/PLA blends and a DOPO-PLA-PU material were also performed. The results evidenced the superior flame-retardant behavior of phosphorylated PLA obtained by a reactive pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据