4.4 Article

Reverse engineering gene networks using global-local shrinkage rules

期刊

INTERFACE FOCUS
卷 10, 期 1, 页码 -

出版社

ROYAL SOC
DOI: 10.1098/rsfs.2019.0049

关键词

Bayesian shrinkage; horseshoe prior; gene networks; reverse engineering

类别

资金

  1. Mathematical Biosciences Institute (MBI) at The Ohio State University
  2. National Science Foundation
  3. DMS [1440386]

向作者/读者索取更多资源

Inferring gene regulatory networks from high-throughput 'omics' data has proven to be a computationally demanding task of critical importance. Frequently, the classical methods break down owing to the curse of dimensionality, and popular strategies to overcome this are typically based on regularized versions of the classical methods. However, these approaches rely on loss functions that may not be robust and usually do not allow for the incorporation of prior information in a straightforward way. Fully Bayesian methods are equipped to handle both of these shortcomings quite naturally, and they offer the potential for improvements in network structure learning. We propose a Bayesian hierarchical model to reconstruct gene regulatory networks from time-series gene expression data, such as those common in perturbation experiments of biological systems. The proposed methodology uses global-local shrinkage priors for posterior selection of regulatory edges and relaxes the common normal likelihood assumption in order to allow for heavy-tailed data, which were shown in several of the cited references to severely impact network inference. We provide a sufficient condition for posterior propriety and derive an efficient Markov chain Monte Carlo via Gibbs sampling in the electronic supplementary material. We describe a novel way to detect multiple scales based on the corresponding posterior quantities. Finally, we demonstrate the performance of our approach in a simulation study and compare it with existing methods on real data from a T-cell activation study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据