4.5 Article

Nonlinear dynamics of a pendulum-beam coupling piezoelectric energy harvesting system

期刊

EUROPEAN PHYSICAL JOURNAL PLUS
卷 134, 期 12, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1140/epjp/i2019-13085-1

关键词

-

向作者/读者索取更多资源

To improve the transform efficiency of vibration energy, we proposed a novel energy harvester composed of a piezoelectric cantilever beam and a pendulum. Under horizontal excitations, the pendulum oscillation will lead to a fluctuation in the tension force of the rope and to a change in the compressive force acting on the beam, which could be employed to make the beam reach dynamic buckling. This buckling could lead to a large amplitude vibration and high voltage output. First, the kinetic energy and potential energy of the system are obtained; then the electromechanical coupling equations are derived based on the extended Hamilton's principle. Furthermore, the dynamical responses of the system subjected to both harmonic and random excitations are explored. The influence of parameters on the performance is thoroughly discussed. The simulation results proved that large pendulum mass and large initial pendulum angle could make the beam buckle more easily, which is beneficial for converting broadband ambient vibration energy. It is also found that the optimal pendulum length could bring about large-amplitude vibrations and generate a considerably high output voltage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据