4.4 Article

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

期刊

BEILSTEIN JOURNAL OF NANOTECHNOLOGY
卷 10, 期 -, 页码 2396-2409

出版社

BEILSTEIN-INSTITUT
DOI: 10.3762/bjnano.10.230

关键词

antimony sulfide; semitransparent solar cells; solar windows; thin films; ultrasonic spray pyrolysis

资金

  1. Estonian Research Council [IUT19-4]
  2. European Regional Development Fund project [TK141 (TAR16016EK)]
  3. DOE Office of Science User Facility [DE-AC02-05CH11231]
  4. Baltic American Freedom Foundation (BAFF)

向作者/读者索取更多资源

The integration of photovoltaic (PV) solar energy in zero-energy buildings requires durable and efficient solar windows composed of lightweight and semitransparent thin film solar cells. Inorganic materials with a high optical absorption coefficient, such as Sb2S3 (>10(5) cm(-1) at 450 nm), offer semitransparency, appreciable efficiency, and long-term durability at low cost. Oxide-free throughout the Sb2S3 layer thickness, as confirmed by combined studies of energy dispersive X-ray spectroscopy and synchrotron soft X-ray emission spectroscopy, semitransparent Sb2S3 thin films can be rapidly grown in air by the area-scalable ultrasonic spray pyrolysis method. Integrated into a ITO/TiO2/Sb2S3/P3HT/Au solar cell, a power conversion efficiency (PCE) of 5.5% at air mass 1.5 global (AM1.5G) is achieved, which is a record among spray-deposited Sb2S3 solar cells. An average visible transparency (AVT) of 26% of the back-contact-less ITO/TiO2/Sb2S3 solar cell stack in the wavelength range of 380-740 nm is attained by tuning the Sb2S3 absorber thickness to 100 nm. In scale-up from mm 2 to cm(2) areas, the Sb2S3 hybrid solar cells show a decrease in efficiency of only 3.2% for an 88 mm(2) Sb2S3 solar cell, which retains 70% relative efficiency after one year of non-encapsulated storage. A cell with a PCE of 3.9% at 1 sun shows a PCE of 7.4% at 0.1 sun, attesting to the applicability of these solar cells for light harvesting under cloud cover.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据