4.8 Article

Single-Atom Pt-N3 Sites on the Stable Covalent Triazine Framework Nanosheets for Photocatalytic N2 Fixation

期刊

ACS CATALYSIS
卷 10, 期 4, 页码 2431-2442

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.9b04925

关键词

two-dimensional materials; covalent triazine framework; single-atom catalysts; photocatalytic nitrogen fixation; ab initio density functional theory calculations

资金

  1. National Natural Science Foundation of China [21536001, 21878229, 21978212, 91961119]
  2. National Key Projects for Fundamental Research and Development of China [2016YFB0600901]
  3. Science and Technology Plans of Tianjin [18PTSYJC00180, 19PTSYJC00020]

向作者/读者索取更多资源

The commercial Haber-Bosch process for NH3 production not only requires large amounts of energy and hydrogen supply but also generates tremendous greenhouse CO2 emission. To mitigate energy and environmental challenges, renewable ammonia production technologies based on electrochemical and photochemical methods, in particular, photocatalytic nitrogen fixation in aqueous phase for ammonia production is highly desired. In the present work, single-atom Pt anchored at the -N-3 sites of stable and ultrathin covalent triazine framework (CTF) nanosheets have been successfully synthesized (Pt-SACs/CTF). The well-defined coordination structure of Pt-N-3 sites in the Pt-SACs/CTF catalyst have been characterized using HAADF-STEM and EXAFS, as well as ab initio molecular dynamics simulations. The ammonia production rate over the as-synthesized Pt-SACs/CTF catalyst is 171.40 mu mol g(-1) h(-1) in the absence of sacrificial agent. On the basis of density functional theory calculations, it has been found that the alternating mechanism is energetically more favorable than the distal mechanism over the well-defined Pt-N-3 sites. The significance of the present work is to demonstrate that the single-atom metal catalysts are anchored at the two-dimensional stable CTF nanosheets for photocatalytic nitrogen fixation to ammonia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据