4.8 Article

Effect of Mixed-Solvent Environments on the Selectivity of Acid-Catalyzed Dehydration Reactions

期刊

ACS CATALYSIS
卷 10, 期 3, 页码 1679-1691

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.9b03460

关键词

acid catalysis; biomass conversion; solvent effects; selectivity; classical molecular dynamics

资金

  1. Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE -5C0018409, DE-FCO2-07ER64494]
  2. Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin Madison
  3. Wisconsin Alumni Research Foundation
  4. UW-Madison
  5. Advanced Computing Initiative
  6. Wisconsin Institutes for Discovery
  7. National Science Foundation [ACI-1548562]
  8. U.S. Department of Energy's Office of Science

向作者/读者索取更多资源

The composition of the liquid phase can alter the rates of individual reaction steps and thus alter the selectivity of acid-catalyzed reactions, but these solvent effects are difficult to anticipate for design purposes. Herein, we report the kinetics and selectivity of Bronsted acid-catalyzed 1,2-propanediol dehydration in pure water and in aqueous mixtures of the polar aprotic cosolvents gamma-valerolactone, 1,4-dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone, tetramethylene sulfoxide, and dimethyl sulfoxide at 433 K. We find that the major product of 1,2-propanediol dehydration is propanal in most mixed-solvent environments with selectivities between 1 and 68 mol %. In contrast, 1,2-propanediol dehydration in aqueous mixtures of dimethyl sulfoxide affords acetone as the major product with up to 48% selectivity with minimal propanal formation. We use classical molecular dynamics simulations to probe these solvent effects by computing the difference between the solvation free energies of 1,2-propanediol and propanal in aqueous mixtures of polar aprotic cosolvents and in pure water. We find that the difference in the solvation free energies is correlated with the rates of propanal formation in all mixed-solvent environments, indicating that the solvent-mediated stabilization of the product state relative to the reactant state translates to increased selectivity toward the same product. Similar agreement between simulated solvation free energies and experimental reaction rates/selectivities is established for the acid-catalyzed dehydration of cis- and trans-1,2-cyclohexanediol and 1,3-cyclohexanediol. Finally, analysis of the solvation environment around 1,2-propanediol shows that dimethyl sulfoxide uniquely competes against water to solvate reactive hydroxyl groups, which causes a change in reaction mechanism in this solvent system that leads to the formation of acetone rather than propanal. These results represent a step toward the computationally efficient screening of solvent systems for acid-catalyzed, liquid-phase processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据