4.8 Article

Unraveling the High Activity of Ylide-Functionalized Phosphines in Palladium-Catalyzed Amination Reactions: A Comparative Study with CyJohnPhos and PtBu3

期刊

ACS CATALYSIS
卷 10, 期 2, 页码 999-1009

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.9b04666

关键词

palladium; C-N cross-coupling; phosphines; DFT calculations; reaction mechanism

资金

  1. European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme [677749]

向作者/读者索取更多资源

Comprehensive mechanistic insights into the activity of different catalysts based on different ligands are important for further ligand design and catalyst improvement. Herein, we report a combined computational and experimental study on the mechanism and catalytic activity of the ylide-substituted phosphine Cy3P-C(Me)PCy2 (keYPhos, L1) in C-N coupling reactions including a comparison with the established and often-applied phosphines (Cy)JohnPhos (L2) and P(tBu)(3) (L3). Density functional theory (DFT) calculations together with the possible isolation of several intermediates within the catalytic cycle demonstrate that L1 readily forms low-coordinated palladium complexes [such as L1.Pd(dba)], which easily undergo oxidative addition and subsequent amine coordination as well as reductive elimination. Due to the possible opening and closing of the P-C-P angle in L1, the steric bulk can be adjusted to the metal environment so that L1 retains its conformation throughout the whole catalytic cycle, thus leading to fast catalysis at room temperature. Comparative studies of the three ligands with Pd(2)dba(3) as a Pd source show that only L1 efficiently allows for the coupling of aryl chlorides at room temperature. DFT studies suggest that this is mainly due to the reluctance/inability of L2 and L3 to form the catalytically active species under these reaction conditions. In contrast, the YPhos ligand readily forms the prereactive complex and undergoes the first oxidative addition reaction. These observations are confirmed by kinetic studies, which indicate a short induction period for the formation of the catalytically active species of L1, followed by fast catalysis. This behavior of L1 is due to its unique electronic and steric properties, which support low activation barriers and fast catalyst generation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据