4.8 Article

Robust weak antilocalization due to spin-orbital entanglement in Dirac material Sr3SnO

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-14900-1

关键词

-

资金

  1. Alexander von Humboldt-Foundation
  2. Russian Science Foundation [14-42-00044]

向作者/读者索取更多资源

The presence of both inversion (P) and time-reversal (T) symmetries in solids leads to a double degeneracy of the electronic bands (Kramers degeneracy). By lifting the degeneracy, spin textures manifest themselves in momentum space, as in topological insulators or in strong Rashba materials. The existence of spin textures with Kramers degeneracy, however, is difficult to observe directly. Here, we use quantum interference measurements to provide evidence for the existence of hidden entanglement between spin and momentum in the antiperovskite-type Dirac material Sr3SnO. We find robust weak antilocalization (WAL) independent of the position of E-F. The observed WAL is fitted using a single interference channel at low doping, which implies that the different Dirac valleys are mixed by disorder. Notably, this mixing does not suppress WAL, suggesting contrasting interference physics compared to graphene. We identify scattering among axially spin-momentum locked states as a key process that leads to a spin-orbital entanglement. The spin texture in presence of both inversion and time-reversal symmetries has been difficult to observe. Here, Nakamura et al. report evidence of hidden entanglement between spin and momentum in antiperovskite Dirac material Sr3SnO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据