4.8 Article

Elastic straining of free-standing monolayer graphene

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-019-14130-0

关键词

-

资金

  1. Hong Kong Research Grant Council (RGC) under the GRF [CityU11216515, CityU11207416]
  2. Hong Kong Research Grant Council (RGC) under ECS [CityU21303218]
  3. City University of Hong Kong [SRG 7004857]
  4. National Natural Science Foundation of China (NSFC) [11825203, 11922215]

向作者/读者索取更多资源

The sp(2) nature of graphene endows the hexagonal lattice with very high theoretical stiffness, strength and resilience, all well-documented. However, the ultimate stretchability of graphene has not yet been demonstrated due to the difficulties in experimental design. Here, directly performing in situ tensile tests in a scanning electron microscope after developing a protocol for sample transfer, shaping and straining, we report the elastic properties and stretchability of free-standing single-crystalline monolayer graphene grown by chemical vapor deposition. The measured Young's modulus is close to 1 TPa, aligning well with the theoretical value, while the representative engineering tensile strength reaches similar to 50-60GPa with sample-wide elastic strain up to similar to 6%. Our findings demonstrate that single-crystalline monolayer graphene can indeed display near ideal mechanical performance, even in a large area with edge defects, as well as resilience and mechanical robustness that allows for flexible electronics and mechatronics applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据