4.8 Article

Bootstrapping quantum process tomography via a perturbative ansatz

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-14873-1

关键词

-

资金

  1. IBM under the Intelligence Advanced Research Projects Activity (IARPA) [W911NF-16-0114]
  2. U.S. Army Research Office [W911NF-14-C-0048]

向作者/读者索取更多资源

Quantum process tomography has become increasingly critical as the need grows for robust verification and validation of candidate quantum processors, since it plays a key role in both performance assessment and debugging. However, as these processors grow in size, standard process tomography becomes an almost impossible task. Here, we present an approach for efficient quantum process tomography that uses a physically motivated ansatz for an unknown quantum process. Our ansatz bootstraps to an effective description for an unknown process on a multi-qubit processor from pairwise two-qubit tomographic data. Further, our approach can inherit insensitivity to system preparation and measurement error from the two-qubit tomography scheme. We benchmark our approach using numerical simulation of noisy three-qubit gates, and show that it produces highly accurate characterizations of quantum processes. Further, we demonstrate our approach experimentally on a superconducting quantum processor, building three-qubit gate reconstructions from two-qubit tomographic data. Quantum process tomography represents one of the workhorses of quantum information processing, but suffers from exponential resource scaling. Here, the authors propose to efficiently infer general processes by approximating them through a sequence of two-qubit processes, and demonstrate it on a three-qubit case.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据