4.8 Article

Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-14358-1

关键词

-

资金

  1. National Natural Science Foundation of China [51722210, 51972285, U1802254, 11904317, 21902144]
  2. Natural Science Foundation of Zhejiang Province [LY17E020010, LD18E020003]

向作者/读者索取更多资源

Metallic lithium anodes are highly promising for revolutionizing current rechargeable batteries because of their ultrahigh energy density. However, the application of lithium metal batteries is considerably impeded by lithium dendrite growth. Here, a biomacromolecule matrix obtained from the natural membrane of eggshell is introduced to control lithium growth and the mechanism is motivated by how living organisms regulate the orientation of inorganic crystals in biomineralization. Specifically, cryo-electron microscopy is utilized to probe the structure of lithium at the atomic level. The dendrites growing along the preferred < 111 > crystallographic orientation are greatly suppressed in the presence of the biomacromolecule. Furthermore, the naturally soluble chemical species in the biomacromolecules can participate in the formation of solid electrolyte interphase upon cycling, thus effectively homogenizing the lithium deposition. The lithium anodes employing bioinspired design exhibit enhanced cycling capability. This work sheds light on identifying substantial challenges in lithium anodes for developing advanced batteries. Inspired by the role of proteins in regulating eggshell mineralization, here Tao, Liu and colleagues apply trifluoroethanol modified eggshell membrane to combat lithium dendrite. Cryo-electron microscopy reveals that the growth along the most favored crystallographic direction is suppressed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据