4.8 Article

Increased intestinal permeability exacerbates sepsis through reduced hepatic SCD-1 activity and dysregulated iron recycling

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-14182-2

关键词

-

资金

  1. Canadian Institute of Health Research [CIHR: MOP-142776, 340405]
  2. Mouse Phenomics Resources Laboratory - Snyder Institute for Chronic Diseases at the University of Calgary, Cumming School of Medicine
  3. Live Cell Imaging Facility - Snyder Institute for Chronic Diseases at the University of Calgary, Cumming School of Medicine

向作者/读者索取更多资源

Inflammatory bowel disease is associated with changes in the mucosal barrier, increased intestinal permeability, and increased risk of infections and sepsis, but the underlying mechanisms are incompletely understood. Here, we show how continuous translocation of gut microbial components affects iron homeostasis and facilitates susceptibility to inflammation-associated sepsis. A sub-lethal dose of lipopolysaccharide results in higher mortality in Mucin 2 deficient (Muc2(-/-)) mice, and is associated with elevated circulatory iron load and increased bacterial translocation. Translocation of gut microbial components attenuates hepatic stearoyl CoA desaturase-1 activity, a key enzyme in hepatic de novo lipogenesis. The resulting reduction of hepatic saturated and unsaturated fatty acid levels compromises plasma membrane fluidity of red blood cells, thereby significantly reducing their life span. Inflammation in Muc2(-/-) mice alters erythrophagocytosis efficiency of splenic macrophages, resulting in an iron-rich milieu that promotes bacterial growth. Our study thus shows that increased intestinal permeability triggers a cascade of events resulting in increased bacterial growth and risk of sepsis. Here Kumar et al. show that increased intestinal permeability reduces hepatic de novo lipogenesis, affecting plasma membrane fluidity and lifespan of RBCs, and the resulting increase in iron levels promotes bacterial growth. This mechanism may explain the increased risk of sepsis associated with inflammatory bowel disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据