4.8 Article

Ultrafast shock synthesis of nanocarbon from a liquid precursor

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-14034-z

关键词

-

资金

  1. US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
  2. LLNL Laboratory Directed Research and Development Program [17-ERD-011]
  3. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

Carbon nanoallotropes are important nanomaterials with unusual properties and promising applications. High pressure synthesis has the potential to open new avenues for controlling and designing their physical and chemical characteristics for a broad range of uses but it remains little understood due to persistent conceptual and experimental challenges, in addition to fundamental physics and chemistry questions that are still unresolved after many decades. Here we demonstrate sub-nanosecond nanocarbon synthesis through the application of laser-induced shock-waves to a prototypical organic carbon-rich liquid precursor-liquid carbon monoxide. Overlapping large-scale molecular dynamics simulations capture the atomistic details of the nanoparticles' formation and evolution in a reactive environment and identify classical evaporation-condensation as the mechanism governing their growth on these time scales. Carbon nanomaterials have widespread application but fundamental aspects of their formation are still unclear. Here the authors explore the shock-induced synthesis of carbon nanoallotropes from liquid CO by time-resolved reflectivity and computations identifying the growth mechanism at the sub-nanosecond timescale

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据