4.8 Article

Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-13755-5

关键词

-

资金

  1. National Natural Science Foundation of China [21476232, 21607029]
  2. International Partnership Program of Chinese Academy of Sciences [121421KYSB20170020]
  3. State Key Laboratory of Catalysis in Dalian Institute of Chemical Physics [N-16-07]

向作者/读者索取更多资源

Supported gold catalysts play a crucial role in the chemical industry; however, their poor on-stream stability because of the sintering of the gold nanoparticles restricts their practical application. The strong metal-support interaction (SMSI), an important concept in heterogeneous catalysis, may be applied to construct the structure of catalysts and, hence, improve their reactivity and stability. Here we report an ultrastable Au nanocatalyst after calcination at 800 degrees C, in which Au nanoparticles are encapsulated by a permeable TiOx thin layer induced by melamine under oxidative atmosphere. Owning to the formed TiOx overlayer, the resulting Au catalyst is resistant to sintering and exhibits excellent activity and stability for catalytic CO oxidation. Furthermore, this special strategy can be extended to colloidal Au nanoparticles supported on TiO2 and commercial gold catalyst denoted as RR2Ti, providing a universal way to engineer and develop highly stable supported Au catalysts with tunable activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据