4.8 Article

Biogenesis and functions of aminocarboxypropyluridine in tRNA

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-13525-3

关键词

-

资金

  1. Ministry of Education, Science, Sports, and Culture of Japan

向作者/读者索取更多资源

Transfer (t)RNAs contain a wide variety of post-transcriptional modifications, which play critical roles in tRNA stability and functions. 3-(3-amino-3-carboxypropyl)uridine (acp(3)U) is a highly conserved modification found in variable- and D-loops of tRNAs. Biogenesis and functions of acp(3)U have not been extensively investigated. Using a reverse-genetic approach supported by comparative genomics, we find here that the Escherichia coli yfiP gene, which we rename tapT (tRNA aminocarboxypropyltransferase), is responsible for acp(3)U formation in tRNA. Recombinant TapT synthesizes acp(3)U at position 47 of tRNAs in the presence of S-adenosylmethionine. Biochemical experiments reveal that acp 3 U47 confers thermal stability on tRNA. Curiously, the Delta tapT strain exhibits genome instability under continuous heat stress. We also find that the human homologs of tapT, DTWD1 and DTWD2, are responsible for acp(3)U formation at positions 20 and 20a of tRNAs, respectively. Double knockout cells of DTWD1 and DTWD2 exhibit growth retardation, indicating that acp(3)U is physiologically important in mammals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据