4.7 Article

Phase field modeling of hydraulic fracture propagation in transversely isotropic poroelastic media

期刊

ACTA GEOTECHNICA
卷 15, 期 9, 页码 2599-2618

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11440-020-00913-z

关键词

Fracture propagation; Hydraulic fracturing; Phase field model; Porous media; Staggered scheme; Transverse isotropy

资金

  1. Natural Science Foundation of China [51474157, 734370]

向作者/读者索取更多资源

This paper proposes a phase field model (PFM) for describing hydraulic fracture propagation in transversely isotopic media. The coupling between the fluid flow and displacement fields is established according to the classical Biot poroelasticity theory, while the phase field model characterizes the fracture behavior. The proposed method applies a transversely isotropic constitutive relationship between stress and strain as well as anisotropy in fracture toughness and permeability. We add an additional pressure-related term and an anisotropic fracture toughness tensor in the energy functional, which is then used to obtain the governing equations of strong form via the variational approach. In addition, the phase field is used to construct indicator functions that transit the fluid property from the intact domain to the fully fractured one. Moreover, the proposed PFM is implemented using the finite element method where a staggered scheme is applied to solve the displacement, fluid pressure, and phase field sequentially. Afterward, two examples are used to initially verify the proposed PFM: a transversely isotropic single-edge-notched square plate subjected to tension and an isotropic porous medium subjected to internal fluid pressure. Finally, numerical examples of 2D and 3D transversely isotropic media with one or two interior notches subjected to internal fluid pressure are presented to further prove the capability of the proposed PFM in 2D and 3D problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据