4.2 Article

Nanocrystalline Ga-Zn Oxynitride Materials: Minimized Defect Density for Improved Photocatalytic Activity?

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/zpch-2019-1432

关键词

chemical vapor synthesis; (Ga1-xZnx)(N1-xOx); nanoparticles; overall water splitting

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [SPP 1613]

向作者/读者索取更多资源

We present an alternative synthesis strategy for developing nanocrystalline (Ga1-xZnx)(N1-xOx) semiconductors known to be very efficient photoabsorbers. In a first step we produce mixtures of highly crystalline beta-Ga2O3 and wurtzite-type ZnO nanoparticles by chemical vapor synthesis. (Ga1-xZnx)(N1-xOx) nanoparticles of wurtzite structure are then formed by reaction of these precursor materials with ammonia. Microstructure as well as composition (zinc loss) changes with nitridation time: band gap energy, crystallite size and crystallinity increase, while defect density decreases with increasing nitridation time. Crystallite growth results in a corresponding decrease in specific surface area. In the UV regime photocatalytic activity for overall water splitting can be monitored for samples both before and after nitridation. We find a significantly lower photocatalytic activity in the nitrided samples, even though the crystallinity is significantly higher and the defect density is significantly lower after nitridation. Both properties should have led to a lower probability for charge carrier recombination, and, consequently, to a higher photocatalytic activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据