4.5 Article

Wave dispersion and dissipation performance of locally resonant acoustic metamaterials using an internal variable model

期刊

WAVE MOTION
卷 93, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.wavemoti.2019.102483

关键词

Engineering structures; State-space formulation; Floquet-Bloch's theorem; Anelastic displacement fields (ADF) model; Nonviscous damping

资金

  1. National Natural Science Foundation of China [51975352]

向作者/读者索取更多资源

Engineering structures for different dispersion and dissipation levels of wave propagation use internal variable models, which may enhance the performance of acoustic metamaterials (AMMs). In this study, the wave dispersion and dissipation performance of AMMs is studied using an anelastic displacement fields (ADF) model. A symmetric state-space method based on Floquet-Bloch's theorem for a nonviscously damped unit cell is developed. The study also constructs Bloch's eigenvalue problems built from the symmetric state-space formulation to obtain the wavevector-dependent damped frequency and damping ratio for wave propagation analysis of periodic structures. The effects of wave dispersion and dissipation on the performance of AMMs are studied by using two numerical examples of mass-in-mass lattice systems containing multiple resonators. It is shown that nonviscous damping increases the wave dispersion performance of AMM. It is also shown that the metadamping phenomenon enhances the wave dissipation performance of AMM. It is demonstrated that the new method in symmetric form is applicable for performance analysis of periodic phononic crystal. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据