4.7 Article

Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning

期刊

WATER RESOURCES RESEARCH
卷 55, 期 12, 页码 11344-11354

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2019WR026065

关键词

prediction in ungauged basins; machine learning; CAMELS; LSTM

资金

  1. Bosch
  2. ZF
  3. Google
  4. LIT [LIT-2017-3-YOU-003]
  5. FWF [P 28660-N31]

向作者/读者索取更多资源

Long short-term memory (LSTM) networks offer unprecedented accuracy for prediction in ungauged basins. We trained and tested several LSTMs on 531 basins from the CAMELS data set using k-fold validation, so that predictions were made in basins that supplied no training data. The training and test data set included similar to 30 years of daily rainfall-runoff data from catchments in the United States ranging in size from 4 to 2,000 km(2) with aridity index from 0.22 to 5.20, and including 12 of the 13 IGPB vegetated land cover classifications. This effectively ungauged model was benchmarked over a 15-year validation period against the Sacramento Soil Moisture Accounting (SAC-SMA) model and also against the NOAA National Water Model reanalysis. SAC-SMA was calibrated separately for each basin using 15 years of daily data. The out-of-sample LSTM had higher median Nash-Sutcliffe Efficiencies across the 531 basins (0.69) than either the calibrated SAC-SMA (0.64) or the National Water Model (0.58). This indicates that there is (typically) sufficient information in available catchment attributes data about similarities and differences between catchment-level rainfall-runoff behaviors to provide out-of-sample simulations that are generally more accurate than current models under ideal (i.e., calibrated) conditions. We found evidence that adding physical constraints to the LSTM models might improve simulations, which we suggest motivates future research related to physics-guided machine learning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据