4.8 Article

Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration

期刊

WATER RESEARCH
卷 168, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.115186

关键词

Flow-electrode capacitive deionization; Membrane stack; Energy efficiency; Productivity

资金

  1. Australian Research Council through the Linkage Scheme [LP170101180]
  2. UNSW Faculty Postdoctoral Research Fellowship
  3. James N Kirby Foundation
  4. Tsinghua Scholarship for Overseas Graduate Studies

向作者/读者索取更多资源

Flow-electrode capacitive deionization (FCDI) is an attractive variant of CDI with distinct advantages over fixed electrode CDI including the capability for seawater desalination, high flow efficiency and easy management of the electrodes. Challenges exist however in increasing treatment capacity with this attempted here through use of a membrane stack configuration. By comparison of standardised metrics (in particular, average salt removal rate (ASRR), energy normalized removed salt (ENRS) and productivity), results show that that an FCDI system with two pairs of ion exchange membranes had the highest efficiency in desalting a brackish influent (1000 mg L-1) to potable levels (similar to 150 mg L-1) at higher ASRR and ENRS. Further increase in the number of membrane pairs resulted in a decrease in current efficiency, likely as a result of the dominance of electrodialysis. Results of this study provide proof of concept that (semi-)continuous desalination can be achieved in FCDI at high energy efficiency (13.8%-20.2%) and productivity (> 100 L m(-2) h(-1)) and, importantly, provide insight into possible approaches to scaling up FCDI such that energy-efficient water desalination can be achieved. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据