4.8 Article

Pin-pointing groundwater infiltration into urban sewers using chemical tracer in conjunction with physically based optimization model

期刊

WATER RESEARCH
卷 175, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.115689

关键词

Sewer system; Urban drainage; Groundwater infiltration; Pipe defect; Chemical tracer; Self-optimization algorithm

资金

  1. National Natural Science Foundation of China [51979195]
  2. China's Major Science and Technology Program on Pollution Control and Treatment of Waterbodies [2017ZX07603-003]

向作者/读者索取更多资源

Groundwater infiltration into sanitary sewers increases hydraulic loadings of sewage collection systems and threatens wastewater treatment efficiency. However, cost-effective approach to quantify this important process still needs to be improved in order to better manage this common issue. This paper presents a method for determining the origin and amount of groundwater entering the urban sewer system. On a catchment scale, by measuring and tracking a chemical tracer (i.e., artificial sweetener acesulfame) in the urban sewers, the magnitude of daily groundwater flows in each sub-catchment could be quantified based on a Monte Carlo chemical mass balance approach. For the study site, 7.9% of the sewer length contributed 58% of the total groundwater infiltration. In the identified high-risk sub-catchment, groundwater sources and their spatial-temporal flows could be further pinpointed and elucidated by physically based numerical self-optimization model using microbial genetic algorithm method, which was verified by on-site sewer flow measurements, as well as time-series tracer concentration patterns at the terminal outlet. It was found that the diurnal variations of groundwater seepage into sewer network was linked to the in-pipe water level associated with sewage pumps operation mode, demonstrating the importance of in-pipe water level regulation in controlling groundwater infiltration. Compared with traditional visual inspection or direct flow measurement methods, the proposed approach exhibits distinct advantages in determining groundwater sources and flows in large sewer systems. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据