4.8 Article

Periodate activation with manganese oxides for sulfanilamide degradation

期刊

WATER RESEARCH
卷 169, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.115278

关键词

Periodate; Diverse manganese oxides; MnO2; Sulfanilamide; Singlet oxygen

资金

  1. Natural Science Foundation of Hubei Province [2018CFB262]
  2. Fundamental Research Funds for the Central Universities of the China University of Geosciences (Wuhan) [CUG170646]
  3. KIST internal project [2E29250]

向作者/读者索取更多资源

This study presents a novel periodate oxidation system mediated by manganese oxides for the rapid removal of aqueous contaminants. The catalytic activation of periodate on manganese oxides was demonstrated as an efficient advanced oxidation system for degradation of sulfanilamide. The reactivity of manganese oxides with different Mn valence followed the order of MnO2>Mn3O4>Mn2O3, all of which showed extraordinary reusability during repeated activation of periodate. Sulfanilamide was rapidly degraded along with stoichiometric transformation of IO4- to IO3-, and both processes exhibited good linear correlations with the dosage of manganese oxides. While the degradation of sulfanilamide in the MnO2/IO4- system was accelerated at lower solution pH, it was only slightly affected by ionic strength, water anions and humic acid. In contrast to the homogeneous system of Mn2+/IO4-, sulfanilamide degradation was not influenced in oxic and anoxic environment. It was evidenced by quenching studies and EPR tests that both singlet oxygen (O-1(2)) and iodate radicals (IO3 center dot) were generated when the metastable Mn(IV)-O-IO3 interacted with sulfanilamide. The XPS spectra of Mn 2p and O 1s before and after reactions indicated that the catalytic activation of periodate on MnO2 was not in company with the redox cycling of Mn(IV) species. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据