4.8 Review

Recent developments and challenges in practical application of visible-light-driven TiO2-based heterojunctions for PPCP degradation: A critical review

期刊

WATER RESEARCH
卷 170, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.115356

关键词

Heterojunction; Pharmaceuticals and personal care products; Photocatalysis; Visible light; Titanium dioxide

资金

  1. Research Grants Council (RGC) of Hong Kong [16200117, 16200918]

向作者/读者索取更多资源

The ability of the TiO2-based photocatalysis process to mineralize organic pollutants has attracted attention worldwide for the degradation of recalcitrant pharmaceuticals and personal care products (PPCPs). Nevertheless, (1) the limited exploitation of the solar spectrum, i.e., activation under UV light (only 2-3% of solar spectrum), and (2) the high recombination rate of photo-generated charge carriers, i.e., electrons and holes, have limited its application which can, however, be improved by developing a TiO2-based heterojunction. The objective of this critical review paper is to discuss the recent developments (2009-2019) in visible-light-driven (VLD) TiO2-based heterojunctions for PPCP degradation and their degradation mechanisms. Compared to the conventional heterojunctions, Schottky and Z -scheme heterojunctions, which are non-conventional heterojunctions, are found to be more effective for PPCP degradation due to their more efficient separation of charge carriers and the occurrence of redox reactions at a relatively higher redox potential. Furthermore, the enhancement strategies for the development of a VLD TiO2-based heterojunction are also explored which can be achieved by selecting the (1) highly photocatalytically active (001) facet of anatase TiO2, (2) synthesis methods governing the structural changes at the junction interface, and (3) heterojunction components which can efficiently generate the powerful center dot OH radicals. The challenges in practical applications are also discussed which include factors, viz., cost reduction, recycling, stability, byproducts analysis, evaluation of the environmental effectiveness, and reactor design and scale-up of the VLD TiO2-based heterojunctions. Accordingly, the prospects of VLD TiO2-based heterojunctions for PPCP degradation in real environmental applications are discussed. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据