4.8 Article

Does mechanical stress cause microplastic release from plastic water bottles?

期刊

WATER RESEARCH
卷 166, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.115082

关键词

Microplastic sources; Drinking water; Scanning electron microscopy; Water bottles; Plastic degradation

向作者/读者索取更多资源

Plastic particle ingestion has become of concern as a possible threat to human health. Previous works have already explored the presence of microplastic (MP) in bottled drinking water as a source of MP intake. Here, we consider the release of MP particles from single-use PET mineral water bottles upon exposure to mechanical stress utilizing SEM plus EDS, which allows the implementation of morphological and elemental analysis of the plastic material surface and quantification of particle concentrations in sample water. The aim of this study was to better evaluate the sources of MP intake from plastic bottles, especially considering the effect of daily use on these bottles such as the abrasion of the plastic material. For that, we analysed MP release of PET bottlenecks and HDPE caps on their surfaces after a series of bottle openings/closings (1 x, 10 x, 100 x). Furthermore, we investigated, if the inner surface of the PET bottles released MPs, counted particle increase of the water and identified MPs in the PET bottled water after exposing the bottles to mechanical stress (squeezing treatment; none, 1 min, 10 min). The results showed a considerable increase of MP particle occurrence on the surface of PET and HDPE material (bottlenecks and caps) after opening and closing the bottles. After 100 times the effect was impressive, especially on caps. Moreover, great differences exist in cap abrasion between brands which uncovers a discrepancy in plastic behavior of brands. Interestingly, particle concentrations in the bottled mineral water did not significantly increase after exposure to mechanical stress (squeezing treatment). The morphological analysis of the inner wall surface of the bottles supported this observation, as no stress cracks could be detected after the treatment, implying that the bottles itself are not a consistent source of MP particles after this extent of mechanical stress. However, chances of MP ingestion by humans increase with frequent use of the same single-use plastic bottle, though only from the bottleneck-cap system. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据