4.8 Article

Mesophilic and thermophilic anaerobic digestion of aqueous phase generated from hydrothermal liquefaction of cornstalk: Molecular and metabolic insights

期刊

WATER RESEARCH
卷 168, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.115199

关键词

Hydrothermal liquefaction aqueous phase; Mesophilic/thermophilic anaerobic digestion; Recalcitrant compounds; Metabolic pathways

资金

  1. National Key Research and Development Program of China [2017YFC0212900, 2017YFC0212200]
  2. National Natural Science Foundation of China [31970117, 21876030, 21906027, 51750110498]
  3. Royal Society International Exchanges 2016 Round 2 [1E160441]
  4. Science and Technology Commission of Shanghai Municipality [18230710700, 17230740900]

向作者/读者索取更多资源

The critical challenge of hydrothermal liquefaction (HTL) for bio-oil production from biomass is the production of large amounts of aqueous products (HTL-AP) with high organic contents. The present study investigated the anaerobic digestion (AD) performances of HTL-AP under both thermophilic and mesophilic conditions, and molecular and metabolic analysis were conducted to provide insights into the different performances. The results showed that thermophilic AD had lower COD removal efficiency compared to mesophilic AD (45.0% vs. 61.6%). Liquid chromatography coupled with organic carbon detection and organic nitrogen (LC-OCD-OND) analysis showed that both high molecular weight (HMW) and low molecular weight (LMW) compounds were degraded to some extent and more LMW acids (LMWA) and recalcitrant aromatic compounds were degraded in the mesophilic reactor, which was the main reason of higher COD removal efficiency. Phenyl compounds (e.g. phenol and 2 methoxyphenol), furans and pyrazines were the recalcitrant chemicals detected through GC-MS analysis. Fourier transform ion cyclone resonance mass spectrometry (FT-ICR-MS) analysis demonstrated the complexity of HTL-AP and the proportions of phenolic or condensed aromatic compounds increased especially in the thermophilic effluents. Metabolites analysis showed that the reasons contributing to the differences of mesophilic and thermophilic AD were not only related to the degradation of organic compounds (e.g. benzoate degradation via CoA ligation) in HTL-AP but also related to the microbial autogenesis (e.g. fatty acid biosynthesis) as well as the environmental information processing. In addition, the enrichment of Mesotoga, responsible for the high degradation efficiency of LMWA, and Pelolinea, involved in the degradation of phenyl compounds, were found in mesophilic reactor, which was consistent with higher removal of corresponding organics. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据