4.8 Article

Efficient recovery of phosphorus in sewage sludge through hydroxylapatite enhancement formation aided by calcium-based additives

期刊

WATER RESEARCH
卷 171, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.115450

关键词

Sewage sludge pyrolysis; Phosphorus transformation; Ca-based additives; Hydroxylapatite; P sustainability

资金

  1. National Key R&D Program of China [2018YFC1902904]
  2. National Natural Science Foundation of China [51772141]
  3. Shenzhen Science and Technology Innovation Committee [KQJSCX2018032215150778, JCYJ20170412154335393]
  4. Shenzhen Peacock Plan [KQTD20160226195840229]
  5. Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme

向作者/读者索取更多资源

Reclaiming abundant phosphorus from sewage sludge (SS) via pyrolysis for use as a fertilizer has gained increasing attention owing to the rapid depletion of global P reserves. In this study, the enhancement effect of Ca-based additives on sludge P transformation to hydroxylapatite through pyrolysis was systematically investigated. Three Ca-based additives were added in the pyrolysis of SS, and they were found to promote the conversion of sludge P to hydroxylapatite, which is bioavailable to plants. The characterization of the sludge-derived pyrochars indicated that the addition of 10% CaO, 5% Ca(OH)(2), or 10% Ca-3(PO4)(2) facilitated peak hydroxylapatite production. The thermodynamic simulation of the production of hydroxylapatite during pyrolysis showed that these additives increased the enthalpy of the pyrolysis system. Furthermore, the pyrolysis with CaO addition had the lowest enthalpy, thereby suggesting that the addition of CaO during sludge pyrolysis was preferable for recovering sludge P in the form of hydroxylapatite. Moreover, the hydroxylapatite produced with these additives was unstable when the pyrolysis temperature was above 900 degrees C. The pot experiment demonstrated the feasibility using the sludge-derived pyrochars as P fertilizer for plant growth. Therefore, changing the Ca form and/or Ca/P ratio with the addition of Ca-based additives could be an effective strategy for reclaiming P from SS in the form of hydroxylapatite, and this demonstrates a pathway for global P sustainability by recycling P from P-abundant wastes. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据