4.8 Article

New insight into the substituents affecting the peroxydisulfate nonradical oxidation of sulfonamides in water

期刊

WATER RESEARCH
卷 171, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.115374

关键词

Sulfonamides; substituents; Nonradical oxidation; Persulfate; DFT calculation; Pathways

资金

  1. China Postdoctoral Science Foundation [55350333]
  2. National Natural Science Foundation of China [51678188, 21577142]

向作者/读者索取更多资源

The large consumption and discharge of sulfonamides (SAs) have potentially induced antibiotic resistance genes, posing inestimable threats to humans and ecosystems. In the present study, five SAs with different substituents were regarded as target compounds to be degraded using the nonradical dominated peroxydisulfate (PDS) activation process by the combination of O-1(2) oxidation and direct electron transfer. The degradation rates, toxicities and pathways of SAs largely varied with their substituents. For instance, sulfathiazole with five-membered substituent had the highest degradation rate of 0.19 min(-1), which was 3.8 times as the rate of sulfanilamide (0.05 min(-1)) without substituent. Then the theoretical calculation was adopted to further confirm that different substituents on the SAs could influence the molecular orbital distribution and their stability, thus resulting in the different removal rate of SAs. Finally, the products of different SAs were concisely deduced to take insight into the effects of different substituents on SAs degradation pathways. It was demonstrated that the geometrical differences among various SAs caused by the different substituents contributed to the different degradation pathways of SAs. Representatively, the special Smiles-type rearrangement pathway was occurred in the six-membered SAs instead of in the five-membered SAs, which inversely resulted in the slower degradation rate of six-membered SAs than the five-membered SAs. Thus, the present study provides a valuable insight into the effects of substituents on the degradation rate and transformation pathways of SAs in the nonradical PDS activation process. (C) 2019 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据