4.6 Article

Comparing Electrochemical and Fenton-Based Processes for Aquaculture Biocide Degradation

期刊

WATER AIR AND SOIL POLLUTION
卷 231, 期 2, 页码 -

出版社

SPRINGER INT PUBL AG
DOI: 10.1007/s11270-020-4454-9

关键词

Malachite green; Aquaculture; Removal; Toxicity; Lactuca sativa

资金

  1. CNPq [870220/2000-4, 161798/2014-4]
  2. FAPEAL

向作者/读者索取更多资源

In this work, malachite green was degraded using different advanced oxidation processes (Fenton, photo-Fenton, sono-Fenton and electrochemical process). Malachite green is used as biocide in aquaculture and is usually discarded with the effluents. On higher pollutant concentration, all the Fenton-based reactions achieved excellent absorbance reduction up to 10 min. Classic Fenton was faster after 10 min of reaction and photo-Fenton acting faster before this point. The photocatalytic effect was better on the oxygen demand reduction (COD) with 86.91% against 79.19% of sono-Fenton and 62.72% of Fenton. All four methodologies had excellent absorbance reduction following the order: photo-Fenton (100% up to 30 min) > electrochemical (99.27%) > Fenton (98.11%) > sono-Fenton (73.99%). Despites the slowly initial degradation obtained for electrochemical process, the reaction achieved high capacity after 60 min. Toxicity tests, using Lactuca sativa seeds, indicated a significant reduction in the effluent toxicity following this sequence: sono-Fenton > photo-Fenton > Fenton > electrochemical. The results showed that all processes studied provided high levels of malachite green removal; however, the adequate use of each technique should be conduct with an accurate evaluation of the needed treatment considering the particularity of each method. Such techniques were successfully applied before to remove dye basic blue 99 and the hormone 17-alpha-methyltestosterone and corroborated by Lactuca sativa toxicity assays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据