4.7 Article

Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers

期刊

THIN-WALLED STRUCTURES
卷 145, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2019.106372

关键词

Active control; Graphene reinforced composites; Piezoelectric materials; Mesh-free method; Higher-order shear deformation theory

资金

  1. National Natural Science Foundation of China [11820101001, 11572236]

向作者/读者索取更多资源

To the best of our knowledge, this is the first trial to study the active vibration control of functionally graded multilayer graphene nanoplatelets (GPLs) reinforced composite plates integrated with piezoelectric layers. The theoretical formulation of the composite plates with piezoelectric layers is developed utilizing the element-free improved moving least-squares Ritz (IMLS-Ritz) method in association with the higher-order shear deformation theory (HSDT). Four GPLs distributions across the thickness of the GPLs reinforced composite layer are considered. For all distributions, the effective Young's modulus is calculated by the modified Halpin-Tsai model while the effective Poisson's ratio and mass density are estimated by the rule of mixture. Natural frequency results for GPLs reinforced composite plates with piezoelectric layers are presented considering various essential parameters including GPLs volume fractions, GPLs distribution patterns, plate's total thickness to width ratio, piezoelectric layer thickness to total plate's thickness ratio as well as boundary conditions. Additionally, the effects of these parameters on natural frequency increment between open and closed-circuit conditions are discussed. For active vibration control results, a constant velocity feedback controller is used considering two positions of piezoelectric sensor and actuator layers: the sensor and actuator layers are placed at two opposite sides or they are placed at the same side of the plates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据