4.7 Article

On the mechanics of thermal buckling of oil storage tanks

期刊

THIN-WALLED STRUCTURES
卷 145, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2019.106432

关键词

Finite element analysis; Fire; Tank roof; Thermal buckling; Shells; Vertical oil tanks

资金

  1. CONICET

向作者/读者索取更多资源

This paper addresses the thermal buckling behavior of tanks having a fixed roof, as employed to store fuel in the oil industry. The study is performed based on finite element analyses of the shell, including linear analysis, linear bifurcation analysis, and geometrically and constitutive nonlinear analysis, in order to elucidate the mechanics of stress redistribution at pre-buckling and buckling states. Based on previous works, the roof is modeled as a conical shell with an equivalent uniform thickness. The results show that the stress field due to a uniform temperature around the circumference is considerably different from that obtained for a non-uniform field as modeled in cases of temperatures due to an adjacent fire: Under uniform temperatures around the circumference the shell does not provide vertical restrain and buckling is dominated by hoop action; whereas displacement constraints are present under a non-uniform temperature, leading to buckling dominated by meridional stresses. Contrary to what has been suggested, the tank under uniform temperature cannot be taken as an upper bound to the buckling of a tank under an adjacent fire. In the evaluation of critical temperatures, the influence of geometric relations H/D (height to diameter) and R/t (radius to thickness) are independent of each other. It is shown that the problem is not imperfection-sensitive. Finally, thermal buckling mode and critical temperatures are strongly dependent on the H/D ratio of the cylindrical shell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据