4.5 Article

Evaluating spatial patterns in precipitation trends across the Amazon basin driven by land cover and global scale forcings

期刊

THEORETICAL AND APPLIED CLIMATOLOGY
卷 140, 期 1-2, 页码 411-427

出版社

SPRINGER WIEN
DOI: 10.1007/s00704-019-03085-3

关键词

Rainfall seasonality; Amazon Basin; Precipitation variations; Extreme events; Precipitation indices; Climate feedbacks

资金

  1. NSF INFEWS/T3 [1639115]
  2. NIFA Hatch Grant [1007604]
  3. Center for Global Change and Earth Observations at Michigan State University

向作者/读者索取更多资源

Spatial and temporal patterns of rainfall are governed by complex interactions between climate and landscape perturbations including deforestation, fire, and drought. Previous research demonstrated that rainfall in portions of the Amazon Basin has intensified, resulting in more extreme droughts and floods. The basin has global impacts on climate and hydrologic cycles; thus, it is critical to understand how precipitation patterns and intensity are changing. Due to insufficient precipitation gauges, we analyzed the variability and seasonality of rainfall over the Amazon Basin from 1982 to 2018 using high-resolution gridded precipitation products. We developed several precipitation indices and analyzed their trends using the Mann-Kendall test (Mann 1945; Kendall, 1975) to identify significant changes in rainfall patterns over time and space. Our results show landscape scale changes in the timing and intensity of rainfall events. Specifically, wet areas of the western Basin have become significantly wetter since 1982, with an increase of 182 mm of rainfall per year. In the eastern and southern regions, where deforestation is widespread, a significant drying trend is evident. Additionally, local alterations to precipitation patterns were also observed. For example, the Tocantins region has had a significant increase in the number of dry days during both wet and dry seasons, increasing by about 1 day per year. Surprisingly, changes in rainfall amount and number of dry days do not consistently align. Broadly, over this 37-year period, wet areas are trending wetter and dry areas are trending drier, while spatial anomalies show structure at the scale of hundreds of kilometers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据