4.7 Article

Quantum dots are conventionally applicable for wide-profiling of wall polymer distribution and destruction in diverse cells of rice

期刊

TALANTA
卷 208, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.talanta.2019.120452

关键词

Glycan immunolabeling; Quantum dots; Chemical pretreatment; Plant cell wall; Biomass; Rice

资金

  1. National Science Foundation of China [31670296, 31571721]
  2. Hubei University of Arts and Science [XKQ2018006]
  3. Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs
  4. NSF [DBI-0421683]

向作者/读者索取更多资源

Plant cell walls represent enormous biomass resources for biofuels, and it thus becomes important to establish a sensitive and wide-applicable approach to visualize wall polymer distribution and destruction during plant growth and biomass process. Despite quantum dots (QDs) have been applied to label biological specimens, little is reported about its application in plant cell walls. Here, semiconductor QDs (CdSe/ZnS) were employed to label the secondary antibody directed to the epitopes of pectin or xylan, and sorted out the optimal conditions for visualizing two polysaccharides distribution in cell walls of rice stem. Meanwhile, the established QDs approach could simultaneously highlight wall polysaccharides and lignin co-localization in different cell types. Notably, this work demonstrated that the QDs labeling was sensitive to profile distinctive wall polymer destruction between alkali and acid pretreatments with stem tissues of rice. Hence, this study has provided a powerful tool to characterize wall polymer functions in plant growth and development in vivo, as well as their distinct roles during biomass process in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据