4.0 Article

Exaiptasia diaphana from the great barrier reef: a valuable resource for coral symbiosis research

期刊

SYMBIOSIS
卷 80, 期 2, 页码 195-206

出版社

SPRINGER
DOI: 10.1007/s13199-020-00665-0

关键词

Symbiosis; Exaiptasia diaphana; Exaiptasia pallida; Model system; Physiology; Symbiodiniaceae

资金

  1. Australian Research Council [DP160101468, DP160101539]
  2. Australian Research Council Laureate Fellowship [FL180100036]

向作者/读者索取更多资源

The sea anemone, Exaiptasia diaphana, previously known as Exaiptasia pallida or Aiptasia pallida, has become increasingly popular as a model for cnidarian-microbiome symbiosis studies due to its relatively rapid growth, ability to reproduce sexually and asexually, and symbiosis with diverse prokaryotes and the same microalgal symbionts (family Symbiodiniaceae) as its coral relatives. Clonal E. diaphana strains from Hawaii, the Atlantic Ocean, and Red Sea are now established for use in research. Here, we introduce Great Barrier Reef (GBR)-sourced E. diaphana strains as additions to the model repertoire. Sequencing of the 18S rRNA gene confirmed the anemones to be E. diaphana while genome-wide single nucleotide polymorphism analysis revealed four distinct genotypes. Based on Exaiptasia-specific inter-simple sequence repeat (ISSR)-derived sequence characterized amplified region (SCAR) marker and gene loci data, these four E. diaphana genotypes are distributed across several divergent phylogenetic clades with no clear phylogeographical pattern. The GBR E. diaphana genotypes comprised three females and one male, which all host Breviolum minutum as their homologous Symbiodiniaceae endosymbiont. When acclimating to an increase in light levels from 12 to 28 mu mol photons m(-2) s(-1), the genotypes exhibited significant variation in maximum quantum yield of Symbiodiniaceae photosystem II and Symbiodiniaceae cell density. The comparatively high levels of physiological and genetic variability among GBR anemone genotypes make these animals representative of global E. diaphana diversity and thus excellent model organisms. The addition of these GBR strains to the worldwide E. diaphana collection will contribute to cnidarian symbiosis research, particularly in relation to the climate resilience of coral reefs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据