4.5 Article

Study of phase stability of SrTi0.3Fe0.7O3-δ perovskite in reducing atmosphere: Effect of microstructure

期刊

SOLID STATE IONICS
卷 342, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ssi.2019.115064

关键词

STF; SOFC electrode; MIEC; Perovskite; Microstructure

资金

  1. ANPCyT [PICT-2016-2965]
  2. CONICET [PIP 0565]

向作者/读者索取更多资源

Increasing SOFC electrode's surface area by modification of its microstructure is a well-known technique to reduce electrode polarization resistance. This is because reduced grain size and increased porosity promote diffusion and surface reactions, thus improving the electrode performance. However, a modified microstructure also causes differences in phase stability and in chemical compatibility with other SOFC materials. In this work, we study the effect of particle size in both the electrode performance and the phase stability under different fuel conditions and temperatures. SrTi0.3Fe0.7O3-delta (STF) is both prepared via solid state reaction (STF-SSR) and also by an alternative sol-gel route (STF-SG). The sintering temperature is reduced dramatically with the sol-gel method, hence inducing a higher porosity and a much smaller grain size. As particle size is reduced the stability under fuel conditions is also diminished, so decomposition induced by segregation of metallic Fe and SrO occurs at lower temperatures for the STF-SG sample. The stability under reducing conditions is studied by combined techniques such as TGA, TPR, XRD, SEM and TEM. Performance as anode and cathode is evaluated by Electrochemical Impedance Spectroscopy (EIS) by using electrolyte supported symmetrical cells. Prior to electrochemical experiments, the reactivity between La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) electrolyte and STF was studied, and also between STF and a Lanthanum Doped Ceria (LDC) buffer layer. It is seen that microstructure also plays a key role in the chemical stability of the STF. The impact of particle size reduction is higher for the anodic polarization resistance, which is reduced twice from STF-SSR to STF-SG.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据