4.8 Article

Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection

期刊

BIOSENSORS & BIOELECTRONICS
卷 74, 期 -, 页码 329-334

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2015.06.068

关键词

MicroRNA detection; Graphene; Gold nanoparticles; Field-effect transistor biosensor; Peptide nucleic acid

资金

  1. National Natural Science Foundation of China [21275040, 21475034]
  2. Natural Science Foundation of Hubei Province [2013CFA061]

向作者/读者索取更多资源

Early detection is proven to be the best chance for successful cancer treatment. MiRNAs, as ideal biomarkers, can identify cancer in the early stage. Therefore, development of highly sensitive and selective detection methods for miRNA is still anticipated. Here we report on a gold nanoparticles (AuNPs)-decorated graphene field-effect transistor (FET) biosensor for highly sensitive, selective and label-free detection of miRNA. The AuNPs-decorated graphene FET biosensor was fabricated by drop-casting the reduced graphene oxide (R-GO) suspension onto the sensor surface, and subsequently decorating AuNPs onto the surface of R-GO. After peptide nucleic acid (PNA) probe was immobilized on the AuNPs surface, miRNA detection was carried out via PNA-miRNA hybridization. It was found that the developed FET biosensor was able to achieve a detection limit as low as 10 fM. In addition, the biosensor enabled an accurate distinction of complementary miRNA from one-base mismatched miRNA and non-complementary miRNA. What's more, this highly sensitive and selective assay was also applied to the detection of miRNA in serum samples, making it a potential method for diagnosis of gene-related diseases. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据