4.7 Article

Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 141, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2019.107657

关键词

Enzymatic stoichiometry; Forest ecosystem; Nitrogen deposition; Nutrient limitation; Soil enzymes

资金

  1. National Natural Science Foundation of China [31600428, 31622013, 31621091]

向作者/读者索取更多资源

Soil enzymes produced by microorganisms transform substrates in the soil carbon (C) and nutrient cycles. Limitations in C and other nutrients could affect microbial biosynthesis processes, so we expect that soil enzyme activity will reflect microbial deficiencies in C, nitrogen (N) and phosphorus (P) at a large spatial scale. We collected soil from nutrient addition trials in eight forest ecosystems, ranging from temperate forests to tropical forests in eastern China, and conducted vector analysis of the soil enzymatic stoichiometry to examine the spatial extent of soil microbial C and nutrient limitations. We also determined whether nutrient addition could alleviate nutrient limitation or otherwise impact soil microbial resource use. Soil microbial C vs. nutrient limitation (thereafter C limitation) was greater in the temperate forests than in the tropical forests, but did not vary with soil depth. Soil microbial P vs. N limitation (thereafter nutrient limitation) decreased with latitude, and increased with soil depth. We found a negative relationship between soil microbial C limitation and nutrient limitation, which was more pronounced in the topsoil than in deeper soil depths. Furthermore, we found that climate (mean annual precipitation and temperature), soil pH and soil nutrients were significantly correlated with soil microbial C (explaining about 23% of the variation) and nutrient limitation (responsible for about 87% of the variation). Nutrient addition represented similar to 1% of the variation in soil microbial C and nutrient limitations and thus did not alleviate nutrient deficiencies. We conclude that soil microbial C and nutrient limitations are more likely driven by climate and soil physicochemical properties than by nutrient addition in eight forest ecosystems. Since soil microbial C and nutrient limitations result from long-term adaptation of soil microbial communities to site-specific soil and environmental conditions, the soil enzyme activity is not modified by short-term changes in nutrient availability resulting from fertilizer application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据