4.8 Article

Graphdiyne: A Brilliant Hole Accumulator for Stable and Efficient Planar Perovskite Solar Cells

期刊

SMALL
卷 16, 期 13, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201907290

关键词

graphdiyne; hole accumulation; perovskite solar cells; unidirectional hole transport

资金

  1. National Natural Science Foundation of China [51961135303, 51932007, 21871217, U1705251]
  2. National Key Research and Development Program of China [2018YFB1502001]
  3. Innovative Research Funds of SKLWUT [2017-ZD-4]
  4. Dept CRF, EdUHK [04490]

向作者/读者索取更多资源

Traditional carbon materials have demonstrated immense potential in perovskite solar cells (PSCs) owing to their superior electrical properties and environmental stability. Graphdiyne (GDY), as an emerging carbon allotrope, features uniformly distributed pores, endless design flexibility, and unique electronic character compared with traditional carbon materials. Herein, graphdiyne is introduced into the upper part of the perovskite (CH3NH3PbI3) layer by utilizing a GDY-containing antisolvent during the one-step synthesis of perovskite. Intriguingly, GDY plays an essential role in hole accumulation and transportation because of its higher Fermi level than perovskite. As a result, the automatic separation of photogenerated carriers inside the perovskite film is achieved. Furthermore, the Schottky barrier formed on the interface between perovskite and GDY guarantees the unidirectional hole transport from perovskite to GDY, thereby benefiting further extraction to the hole transport layer. Consequently, GDY-modified perovskite-based planar PSCs exhibit a boosted J(sc) of 24.21 mA cm(-2) and up to 19.6% power conversion efficiency owing to the increased efficient light utilization and charge extraction. The device with GDY modification exhibits less than 10% shrinkage after a month in ambience. Overall, this work demonstrates an easy method for the utilization of GDY to boost the charge extraction and environmental stability in PSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据