4.8 Article

Large-Scale Modification of Commercial Copper Foil with Lithiophilic Metal Layer for Li Metal Battery

期刊

SMALL
卷 16, 期 5, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201905620

关键词

Ag nanoparticles; dendrite-free; lithium metal anodes; planar collectors; stable deposition

资金

  1. Shenzhen Government's Plan of Science and Technology [KQJSCX2017033011014404]
  2. National Key R&D Program of China [2018YFA0306900]
  3. National Natural Science Foundation of China [51872012, 51602202, 51774203]
  4. Beijing Zhongkebaice Technology Service Co., Ltd.

向作者/读者索取更多资源

The application and development of lithium metal battery are severely restricted by the uncontrolled growth of lithium dendrite and poor cycle stability. Uniform lithium deposition is the core to solve these problems, but it is difficult to be achieved on commercial Cu collectors. In this work, a simple and commercially viable strategy is utilized for large-scale preparation of a modified planar Cu collector with lithiophilic Ag nanoparticles by a simple substitution reaction. As a result, the Li metal shows a cobblestone-like morphology with similar size and uniform distribution rather than Li dendrites. Interestingly, a high-quality solid electrolyte interphase layer in egg shell-like morphology with fast ion diffusion channels is formed on the interface of the collector, exhibiting good stability with long-term cycles. Moreover, at the current density of 1 mA cm(-2) for 1 mAh cm(-2), the Ag modified planar Cu collector shows an ultralow nucleation overpotential (close to 0 mV) and a stable coulombic efficiency of 98.54% for more than 600 cycles as well as long lifespan beyond 900 h in a Li|Cu-Ag@Li cell, indicating the ability of this method to realize stable Li metal batteries. Finally, full cells paired with LiNi0.8Co0.1Mn0.1O2 show superior rate performance and stability compared with those paired with Li foil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据