4.7 Article

Metal-organic frameworks derived ZnO@MoS2nanosheets core/shell heterojunctions for ppb-level acetone detection: Ultra-fast response and recovery

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 304, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2019.127430

关键词

ZnO@MoS2; Core/shell heterojunctions; Acetone sensor; Ppb-Level; Theoretical calculations

资金

  1. Natural Science Foundation of Shandong Province [ZR2018BEM033, ZR2019MEM009]
  2. Taishan Scholar Foundation [ts20130929]
  3. Fundamental Research Funds for the Central Universities [18CX02187A, 19CX05002A]
  4. Graduate Innovation Fund of China University of Petroleum [YCX2019067]

向作者/读者索取更多资源

It is imperative to explore an accurate ppb-level acetone sensor for noninvasive detection of diabetes. In this work, two dimensional p-type MoS2 nanosheets are introduced on the surface of p-type ZnO derived from metal-organic frameworks (MOFs) to produce ZnO@MoS2 core/shell heterojunctions as a novel acetone sensor, showing a great enhancement of acetone response, about two orders of magnitude than that of pure ZnO derived from MOFs. For example, the ZnO@MoS2 exhibits about 80 times enhancement in response to 100 ppb acetone than that of pure ZnO. More importantly, this ZnO@MoS2 heterojunctions sensor exhibits an ultra-fast response/recovery to ultra-low concentration acetone (60 s/40 s @ 5 ppb), which is the best acetone sensing performance for the metal oxide-based materials reported to date. Moreover, the acetone sensing performances are negligibly affected by humidity and other gas, which is suitable for exhaled acetone detection. Finally, it is elucidated that the sharp increase of negative heterojunction interface resistance, ultra-fast gas diffusion rates in MoS2 nanosheets and strong interaction energy are key factors for the excellent acetone sensing properties of ZnO@MoS2. This work opens up a novel and efficient way for ultra-low concentration gas detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据